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Frank1 showed in his article [ 1 1 that the main term in Chaplygin’ s 
equations can be used for the computation of “shock-free” plane-parallel 
Lava1 nozzles in the region close to the throat. Frankl’ presented the 
main term of the solution in a form of a linear combination of two hyper- 
geometric functions. Later Fal’kovich succeeded in transforming the main 
term into a polynomial of third degree, thus simplifying the analysis and 
computation of the flow in the nozzle. Both solutions are sufficiently 
accurate. however, only in a zone immediately close to the throat of the 
nozzle. This restricts their practical applicability. 

This article presents an approximate solution of the equations of 
Chaplygin, which are more accurate at a much larger distance from the 
nozzle throat, than the solutions by prank1 and Fal’kovich. The solution 
obtained is applied to the construction of the initial portion of the 
supersonic part of a Lava1 nozzle, whose streamlines in the subsonic part 
have the form [ 1 1 : 

Here B, Bl, B2 are constants, 2~s is Chaplygin’s function, r Chaplygin’s 
variable, v the flow velocity, a the critical velocity, k the adiabatic 
exponent, r* the value of r for : = a, . 

1. Integration of an auxiliary system of euuations. To solve the 
problem we shall proceed from Chaplygin’s equations c 2 1 : 

where 
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Here 8 is the angle of inclination of the velocfts vector, p the gas 
density, po the stagnation density , (1 the sound velocity in the gas flow, 
$ the stream function, + the velocity potential. 

An auxiliary system of equations will be set up for the solution of 
the proposed problem. The function b in the system (1.1). given by equa- 
tion (1.23, is replaced by an arbitrary function h. The system (1*1) will 
then become 

The system of equations ff.31 is to be integrated. The function ir will 
be determined during this integration. The constants in the h function 
are to be selected in such a way, that in a certain interval ? the func- 
tion k will approximate to the function b in the equalities (1.2). If we 
succeed, the solution of the system (1.3) will be an approximate solution 
of Chaplygin’s equations in that range of values r/, wherein the function 
h approximates to the function b. 

To integrate the auxiliary system of equations. we eliminate the angle 
8 from the system (1.31: 

(1.9 

We seek an integral of this equation in the form 

CD (4 = eC*F (4) 0.5) 

where sb (V) and F($I are functions to be determined, c is a constant. 

Putting into equations (1.4) the values of the derivatives obtained 
with the help of (l-5), we obtain, after carrying out the ditferentiation 

The prime bere and further on means defferentfatfon with respect to q, 
Assuming 

Where cl is a constant, this results in 

d$. + C,%“F = 0 

0.7) 

(1.8) 

The three unknown functions @, h, F, csn be determined from equations 
(1.7) and (1.3). 

Particular solutions of equation (I-31 are the functions: 

F = cp CM c,cJ) 

The first of equations (l-7) gives 
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Introducing this, the second of equations f1.7) gives 

ge introduce a nev function 
z=hV=ii 

(In what follows we shall be fnterested in negative 

Putting the expression @‘, obtained from (1.X1), 

values of ‘I)* 

into (1.16) we obtair 

(1.13) 

After carrying out the integration and substituting zr in agreement 
with (1.12), an expression is obtained, which determines the function h 
(for CCJ c 1): 

Thus, the integral (1.5) of the equation 

@ = cZeCIP cos cIc() 

(1.4) has the form 

(1.15) 

wherein @ is determined by equation (1.111, At the same time -function tr 
of equation (1.4) is determined by relation (1,141. 

fn order to complete the integration of the suxilfary system (f.31, 
the expression for the angle of inclination of the velocity vector has 
to be obtained. 

Returning to the system (1.31, we get 

where o(4) is a function to be determined. 

The expression for the angle 8 is obtained by taking h/d$ from (1.15 
and comparing with fl.10): 

6 = clc2ecIp sin ccl+ + U (4) 

After substitution of a$)/a$ and ae/a$ into the second equation of 
the system (1.3) the function UC$) is obtained by integration, and hence 
the required function 6: 

6 = crc#@ sin cc& + CC& (1.16) 

2. Appnoxfwote iategration of Cbaplrgln*s equationa. Expressions (l-15! 
and (1.16) are integrals of the system (1.3) In the case when the functior 
h Is determined by equation (1.14). However. we are interested in the 
system (X.1) which. instead of the function h contains the function b. 
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defined by (1.2). 

Therefore, the constants cl, c,, and c5 in the expression fl- 141, defin- 
ing the function h, are to be selected in such a way, that the function h 

will approximate to the function b. Then the integrals of the auxiliary 

system of equations (1.3) may be considered to be the approximate Solution 

of Chaplygin’ s equations. 

We are interested in the solution of Chaplygin’s equations for the 
supersonic zone of the nozzle, adjacent to the transition line. Therefore 

we will approximate the function b in the region of negative values of W. 
beginning with I) = 0 Ci = 1-O). 

Big. 1. Q. 2, 

To select the constants, we require that equations (1. If), (1*14), 
(1.15) be satisfied at the center of the nozzle, where $ = $ = 0 

q=@=o, 

Indicating the values of functions on the transition line, by 
asterisk (‘), (remembering that c3 = I), we obtain 

6x2 = @,h*S, co=--a),% s 
7c 

Ca = Qt,, l I 
% = 2 V@*h*w 

Hence, the integrals of the auxiliary system of equations for 
discussed are: 

t=&‘PcosCVQ& 

Were 

and 

an 

fz.U 

the case 

(2.2) 

Q, 
tzz.z-= Ql&,s 

@* (D,h,B - qh” (2.3) 
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Computations show that, when he = 6, = 2.11 and 9 = 0.2, the function 
h approximates quite well tFig.1) to the function 6 between the limits 
o>q>- 8.45, i.e. for 

1&M<1.5 (2.5) 

As is known, replacement of the function b by the function h is equi- 
valeni to the replacement of the adiabat by another relationship between 
the gas density and pressure. This relationship can be easiiy established 
when the function h is known. Simple transformations give, for the case 

dfscuased 

P 
-=,-,.,(,--~~.O.Z,,i(~-~~+0.012(1-~)9+... 
P* 

The analogous series for the adiabatic relationship is: 

~=1--1.4(1-~)+0.280(Z-~)2+0.0~~(~-~~~+... 
e 

Comparison of both expressions and the results of computations (Fig.21 
show that over the range (2.51, approximation of the adiabat by the rela- 
tionship between density and pressure, corresponding to the function h 

of (2.41, can be considered satisfactory. In order to prove that the 
functions (2.2) really represent the flow in the initial portion of the 
supersonic part of the Lava1 nozzle, which has a subsonic part of the 

type given in (0. I), it is necessary to check: 

(I) that equations (2.2) satisfy the symmetry conditions with respect 
to the streamline $= 8: 

7 (% $) = ? (cp, - 4)) 9 (% tG) = - 9 (PI - G), g (cp, 0) = 0 

(2) that the flow given oy equations (2.2) joins on the transition 
line with the flow given by the function (9.1). The first is obvious. The 
following section is concerned with the proof of the second condition. 

3. Expansion io aerfes of a stream faaction and its derivatives. In 
Ref. f 1 1 Frankf’ demonstrated that the stream function (8. I) represent- 
ing the subsonic part of the nozzle, and also its derivatives, can be 
given on the transition line bu the series: 

Pm-1 

9--‘f* + E,g’la + J&8 + . . . + Em@ ---i-- f . . . 

(3.1) 
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rhere D and E are constants. 

We will show that the stream function defined by equations (2.2) and 
representing the initial portion of the supersonic part of the nozzle, 
and also its derivatives, can be given by a series of similar form on the 

transition line. 

Equations (2.2) are used, eliminating $. Then 

e= ~(tt~~~~-e~~) (3.2) 

Taking into consideration that r = l.@on the transition line, and ex- 
panding tgc\/(cbthe3 $)in series, 8 can he represented by the following 

series: .- 
0=r(a$~+a,P+a,S3+ . ..) (r = V Q,%,S , 6 = c Vu-&~~*) (3.3) 

The function $ can be expanded in a series of powers of 0 
l/3 . Raising 

both parts of (3.:) by the power 113, we obtain 

e’f* zz.z ,‘I*& (a3 + ajsz + a,64 + ’ * .)‘I* = &6 + g,P + g,65 + * * - 

If the last series is inverted, and its first coefficient computed. 

(3.4) 

Hence 

‘a+ 
ml-2 

\-> 

1 
ae l = 3”*caD,h,a 

e-“1 + iv1 -+ 3 N20*Ja + , . . + _qL iv,e 3 -t- . . . (3.5) 

To determine a series for a$/aq, we use equation (3.2). Differentiat- 

ing first by 9, and then by 0, and assuming t = 0, we find that on the 

transition line 

From these equations it follows that 

Using (3.5) it is simple to find 
?t7?-1 .- 

4J ( > 1 
a?. = &@, h, 2 

o-‘ia + .heV- J3e + . . . + J,O 3 + . . . 
zm- 4 

a2iJ 
i 1 aeq‘*--- 3s,,ci h 

2 
e-‘f*+ + J1e--*Jr + .r2 + . . . + y f,e 3‘- + . . . 

l L 

Therefore, the stream function represented by equations (2.2) and ita 
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derivatives really can be expressed by a series of the same form as the 

stream function (0.1). 

The solution obtained by Fal’kovich [3 1 for the transition zone of 

the nozzle can be derived from the solution (3.3) as its first approxima- 
tion. To show this, we expand the functions in (3.3) in series and take 

only the first two members of each series. Applying (3.3) and replacing 
h4 by its equivalent b’, we have 

Trans tit1 
88 

.on lin 

l%t 

-08 

Fig. 3, Fig. 4. 

After opening parentheses and neglecting the term containing +g2 in 
the first equation and the term with #ti3 in the second equation, the 

transformation gives: 

These expressions coincide with the solution in Ref. [ 3 I. The cons- 
tant A, introduced in Ref. 13 1, is linked with the constant c by the 

relation A = c@ b 3. This means that the constant c has the same meaning 
as the constant 5 *in Ref. [ 2 1. 

4. Construction of the flow in the initial portion of the supersonic 
part of the nezgle. Equations (3.3) make possible the construction of a 
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nozzle flow in the $9 plane. Transformation to the xy plane can be 
accomplished in the usual way with the help of the relations 

dt = $ cas 3 drf- $- sin Bdy, dy =$hBd~ -+~wsfMJI 
The following formulas are obtained for the coordinates of streamlines 

in the transition zone of the nozzle: 

l 1 
g--F* = @*be3 -cos&ldt s t vt 

T=-_+ * 
1 

ij -;, = @'.b,3 s $ sin 0dt 
Y y=._ 

t 
-Aa, 

In these formulas x y are the coordinates of the intersection point 
of a streamline with tgk t;ansitlon line, t Is the function defined by 

equation (3.31 and shown in Pig. 3. 

Similar expressions can be derived for other characteristic curves: 
lines of equal velocity characteristics, and others. 

When dimensionless coordinates are used the flow in different nozzles 
(different values of A1 can be plotted on the same diagram. 

Results of the computation of the streamlines and lines of constant 
velocity are presented in Pig. 4. 
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